Inbound L ogistic Planning: Minimizing Transportation and I nventory Cost
Berman, Oded;Wang, Qian _ _

Transportation Science; Aug. 2006; 40, 3; SciTech Premium Collection

pg. 287

TRANSPORTATION SCIENCE

Vol. 40, No. 3, August 2006, pp. 287-299
15sN 0041-1655 | E1ssN 1526-5447 | 06 | 4003 | 0287

[{ormsH

po110.1287/trsc.1050.0130
©2006 INFORMS

Inbound Logistic Planning: Minimizing
Transportation and Inventory Cost

Oded Berman

Joseph L. Rotman School of Management, University of Toronto, 105 St. George Street, Toronto, Ontario M5S 3E6, Canada,
berman@rotman.utoronto.ca

Qian Wang
Management School, Graduate University of China Academy of Sciences, 80 Zhongguancunrd,
Beijing 10, 00080 P. R. China, wangqian@gucas.ac.cn

In today’s competitive environment, supply chain management is a major concern for a company. Two of the
key issues in supply chain management are transportation and inventory management. To achieve significant
savings, companies should integrate these two issues instead of treating them separately. This paper considers
the problem of selecting the appropriate distribution strategy for delivering a family of products from a set of
suppliers to a set of plants so that the total transportation, pipeline inventory, and plant inventory costs are
minimized. With reasonable assumptions, a simple model is presented to provide a good solution that can serve
as a guideline for the design and implementation of the distribution network. Due to the plant inventory cost,
the problem is formulated as a nonlinear integer programming problem. The problem is difficult to solve because
the objective function is highly nonlinear and neither convex nor concave. A greedy heuristic is proposed to find
an initial solution and an upper bound. A heuristic and a branch-and-bound algorithm are developed based on
the Lagrangian relaxation of the nonlinear program. Computational experiments are performed, and based on

the results we can conclude that the performance of the algorithms are promising.
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1. Introduction

In a typical supply chain, there are sets of suppli-
ers and plants. Products (e.g., raw materials or parts)
are shipped from suppliers to plants to be further
processed. For example, consider an automobile com-
pany. The car is assembled at one of the company’s
assembling plants. The assembling plant does not pro-
duce all the parts that are required for the assembly.
It typically procures the required parts from a set of
suppliers, such as an engine supplier, a tire supplier,
etc. A supplier produces one or several types of parts.
It may satisfy the demands of one or several assem-
bling plants. The suppliers and the assembling plants
form a two-level supply network.

For many companies, the products are shipped
from a supplier to a plant by trucks. There are several
distribution strategies for truck delivery:

* Direct: Trucks travel directly from a supplier to a
plant, without any stop.

* Milk-run (peddling): Trucks pick up products at
one or several suppliers and deliver them to one or
several plants.

* Cross-dock: Products are delivered from suppli-
ers to a cross-dock, and then from the cross-dock to
plants.

287

The three distribution strategies are illustrated in
Figure 1.

Different distribution strategies have different trans-
portation cost and time. For example, direct deliv-
ery has the shortest distance, and therefore the low-
est transportation cost and the shortest delivery time.
A delivery through a cross-dock has the longest dis-
tance, and therefore the highest transportation cost
and the longest delivery time. When each truck is
fully or almost fully loaded (which is appropriate for
the case when the amount to be shipped is fairly
large), because direct delivery can only consolidate the
products from the same supplier to the same plant,
low delivery frequency and high plant inventory are
incurred. Meanwhile, cross-dock can combine prod-
ucts from different suppliers, which leads to high
delivery frequency and low plant inventory. The rela-
tionship between distribution strategy and inventory
cost is listed in Table 1.

In this paper, we consider the problem of selecting
the appropriate distribution strategy for delivering a
family of products from a set of suppliers to a set of
plants so that the total transportation, pipeline inven-
tory, and plant inventory costs are minimized.

Models that attempt to combine inventory and
transportation cost are not new in the literature. Inter-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com




Berman and Wang: Minimizing Transportation and Inventory Cost
Transportation Science 40(3), pp. 287-299, ©2006 INFORMS

Q_ Q O Supplier
Q .\\.\ '\ [] Plant
\Q """"" "E':I (O Cross-dock

"~ )

! -
/ '\.lj
] —— Direct

————— + Milk-run

i + Cross-dock
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ested readers are referred to Bertazzi and Speranza
(1999) and Baita et al. (1998) for a survey on the mod-
els and algorithms for the minimization of inventory
and transportation costs. The one that is the most
closely related to our problem is presented in Blumen-
feld et al. (1987). The problem studied in Blumenfeld
et al. (1987) is how to ship products from suppliers to
plants for a General Motors division, Delco Electron-
ics Division, so that the total of transportation and
inventory costs are minimized. However, the paper
does not present any analytical model.

Most of the papers that deal with analytical models
on inventory and transportation management can be
classified according to the source and destination of
the distributed products. They include the following.

(1) Single source to single destination. Speranza and
Ukovich (1994) dealt with the problem of minimiz-
ing the sum of transportation and inventory costs for
shipping several products on a common link where
the shipping frequency is selected from a finite set
of potential values. Zhao et al. (2004) addressed the
problem of determining the optimal ordering quantity
and frequency for a supplier-retailer logistic system in
which the transportation cost as well as the multiple
uses of vehicles are considered.

(2) Single source to multiple destinations. Burns et al.
(1985) studied the problem of minimizing total inven-
tory and transportation costs from a supplier to mul-
tiple customers. They derived formulas for the two
costs and determined the optimal trade-off between
these costs. Campbell (1993) presented and optimized
an approximate analytical model of distribution from
a single origin to many destinations via transshipment
terminals. Cetinkaya and Lee (2000) presented an ana-
lytical model for coordinating inventory and trans-

Table 1 Distribution Strategies and Inventory Costs for a Full Truck

Inventory cost
Distribution Delivery Delivery
strategy time frequency Pipeline Plant
Direct short low low high
Milk-run medium medium medium medium
Cross-dock long high high low

portation decisions in a vendor-managed inventory
system. They developed a renewal-theoretical model
for the case of Poisson demand to compute the opti-
mal replenishment quantity and dispatch frequency
simultaneously. Chan et al. (2002) presented a model
to design simple inventory policies and transporta-
tion strategies to satisfy time-varying demands over a
finite horizon, while minimizing systemwide cost by
taking advantage of quantity discounts in the trans-
portation cost structures.

(3) Multiple sources to single destination. Popken
(1994) presented a model to consolidate inbound
freight at transshipment points from multiple sources
to a single destination to minimize the overall trans-
portation and inventory costs.

The papers that involve distributing products from
multiple sources to multiple destinations focus mostly
on the issues of distribution network design with
or without transshipment centers (hubs). A trans-
shipment center is used to increase the efficiency
of delivery systems when economies of scale are
taken into account, i.e., the marginal cost decreases
with flow volume. For example, Campbell (1996) and
O’Kelly and Bryan (1998) studied the problem of find-
ing locations for the hubs and assigning nodes to
them. These models focused on the hub-and-spoke
system only. There are also some papers that consid-
ered the mixed delivery systems. Aykin (1995) stud-
ied the problem of simultaneously determining the
hub locations and delivery mode for each demand.
Liu, Li, and Chan (2003) studied a mixed truck deliv-
ery system that allows both hub-and-spoke and direct
shipment delivery modes. The computational experi-
ment results showed that the mixed system can save
around 10% of total traveling distance on average
as compared with either of the two pure systems.
Lapierre, Ruiz, and Soriano (2004) presented a new
model and an efficient metaheuristic that determines
the number and the location of hubs, as well as the
best distribution strategies on each segment account-
ing for both weight and volume metrics. However,
these models do not take into account the inven-
tory cost.

Blumenfeld et al. (1985) studied the problem of
determining optimal shipping strategies on a freight
network with a single consolidation terminal by
analyzing trade-offs between transportation, inven-
tory, and production set-up costs. A decomposition
method was presented to solve problems with few
origins and shipment sizes. Bookbinder and Fox
(1998) considered the problem of finding the opti-
mal routings for intermodal containerized transport
from five Canadian origins to three major Mexi-
can destinations. Nondominated time/cost trade-offs
are identified for each origin-destination pair. The
plant inventories were not considered in their model.
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Shen, Coullard, and Daskin (2003) proposed a joint
inventory-location model that involves a single sup-
plier and multiple retailers. Its goal is to determine
which retailers should serve as distribution centers
and how to allocate the other retailers to the distribu-
tion center. Snyder, Daskin, and Teo (2006) extended
the model to the situation with random parameters
described by discrete scenarios.

The problem of selecting the distribution strategy
studied in this paper is very complicated if all the
details must be captured. As mentioned in Daganzo
(1999), often a two-step solution approach is suit-
able for logistic problems. The first (analytical) step
involves few details and uses approximation to get
broad solution concepts; the second (fine-tuning) step
generates specific solutions based on the solution
obtained in the first step by taking into account all
the relevant detailed information which are ignored
in the first step. We focus on the first analytical step.
To have a solvable problem that captures the essence
of the cost, we make assumptions about the product
quantities and frequencies.

AssuMPTION 1. Product quantities are infinitely split-
table, i.e., a product can be shipped in any quantity within
a vehicle shipment.

AssuMPTION 2. Delivery frequency can be any positive
number and is not limited to a set of potential numbers.

We also ignore some operational details by assum-
ing that

AssUMPTION 3. Products are always available for ship-
ping at suppliers, no matter which distribution strategy is
chosen.

AsSSUMPTION 4. Inbound-outbound coordination at the
cross-dock is ignored.

AssuMPTION 5. All units of the same flow (a flow is a
combination of supplier, plant, and product) are assigned to
the same transportation option, i.e., direct or through the
same cross-dock.

ASSUMPTION 6. Each truck is fully loaded. Only the
volume of products is concerned when calculating truck
capacity usage. The transportation costs are only deter-
mined by the source and destination, regardless of the
weight.

The solution of the simple model based on
Assumptions 1-4 may not be directly implementable.
For example, products may not be available all the
time due to the capacity limit of the suppliers, or the
interval between two shipments to the plants through
cross-dock may not be constant due to the coordi-
nation at the cross-dock. However, the solution of
the simple model can serve as a guideline for the
implementation of distribution and an approximation

of true costs. Managegment can get an implementable
solution by fine-tuning it.

We note that Assumption 5 is practical due to
the simplicity of its implementation. Although full-
truckload delivery policy may give an infinitely large
error with respect to the optimum, as pointed out in
Bertazzi and Speranza (2005), Assumption 6 is reason-
able if the quantity of product shipped is not too low
and the ratio between the inventory-carrying cost and
the volume of the products is not too high.

In this paper, we focus on the special case that sat-
isfies the following conditions:

(1) The demand rate for each product at each plant
from each supplier is constant.

(2) Only direct and cross-dock distribution strate-
gies are considered.

(3) Only one truck type is available.

We do not consider peddling explicitly in this paper
because peddling can be done in a preprocessing pro-
cedure, as mentioned in Blumenfeld et al. (1987). We
can group together suppliers (plants) in close prox-
imity to form peddling regions by visual observa-
tion. Each group of suppliers (plants) is treated as a
single supplier (plant) and the flows that originate
from (or are destined to) the same group of suppli-
ers (plants) are combined as well. The transportation
costs are approximated by the cost to the closest sup-
plier (plant) in the group plus the cost of traveling
between suppliers (plants) in the region.

The rest of this paper is organized as follows. Sec-
tion 2 presents a nonlinear integer mathematical for-
mulation for our model. Section 3 proposes a greedy
heuristic to find an initial solution. A Lagrangian
relaxation heuristic and a branch-and-bound algo-
rithm are developed in §4. Computational experi-
ments and a sensitivity analysis are reported in §5.
Section 6 concludes the paper with a summary and
directions for future work.

2. Formulation

The notation used in this paper are listed in Table 2,
where we use a general “period” for measuring quan-
tities (period can either be a week, a month, or any
other time unit that management prefers).

Note that t4, t,, and ty; are the ratios of transporta-
tion time to the length of a period. For example, if a
period is a week and #, is three days, then t{, =3/7.

Note also that the number of products can be
reduced dramatically if we group similar products
together. For example, consider a paint supplier for
the automobile assembly plants. Although the num-
ber of colors for a specific type of paint may be in
the tens or in the hundreds, we can group this type
of paint as one product because they have the same
price and occupy the same truck capacity. By doing
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Table 2 Notation

set of suppliers

set of plants

set of products

set of cross-docks

truck capacity

direct transportation cost of shipping one truckload of products from
supplier / to plant j

inbound transportation cost of shipping one truckload of products
from supplier / to cross-dock k

outbound transportation cost of shipping one truckload of products
from cross-dock k to plant j

t;} direct transportation time (periods) from supplier / to plant j

t,  inbound transportation time (periods) from supplier / to cross-dock k

t,  outbound transportation time (periods) from cross-dock k to plant

T,  time spent in transferring from inbound to outbound at cross-dock k

b,  truck capacity occupied by one unit of product p

h,  inventory-carrying cost of one unit of product p per period

d,, demand of product p required from supplier / by plant j per period
F={(i.J,p):1€l,jed, peP, dy, >0, set of flows
F=((i.j,p)iel peP, dy,>0), setof flows to plant j

Fy=1{/./,p). peP, dy, > 0}, set of flows from supplier / to plant j
Py=1p:(l.j.p)€Fy}

1P ={{i,p):(i,].p) € F}}

[oxve~

Y

Y

80, we can reduce the number of flows even more
dramatically.

To obtain a compact mathematical formulation, we
introduce a dummy cross-dock 0, where 0 ¢ K. A flow
assigned to cross-dock 0 means that it is actually
shipped directly. Let K® = K U {0}. With the introduc-
tion of decision variables

1 if flow (i, j, p) is shipped through
Xijpk = cross-dock k,
0 otherwise,
(note that x;,, =1 means that flow (i, j, p) is shipped

directly), the mathematical formulation of the problem
can be stated as follows:

(P) min }_ g(X) (1)
kek®
subject to
Y xu=1 VY(i,j,p)eF, )
kek©
i €10,1) (i, j,p)eF, keK®, &)

where X is the vector of all the decision variables
Xk, and g, (X) is the total of transportation, pipeline
inventory, and plant inventory costs to ship flows
through cross-dock k. Constraints (2) ensure that
every flow is delivered and constraints (3) guarantee
that the same flow follows the same route.

Next, we present the functions g,(X), k € K°. In the
remainder of this paper, we assume that 0/0 =0.

21, g(X)

Function g,(X) is the total cost of direct delivery.
For each supplier-plant pair (i, j), the frequency of
shipment is f,-‘,-’ = Y per; bpdijp x50/ C, the transportation
cost is ffcf, the pipeline inventory cost is 3_,p, tih, -
djpXijp0, and the plant inventory cost is Zpep,, hy,diip Xm0/
(2f{)). Hence, we have

hd, x.
8(X) = ZZ[ AR D (tgkpdfirxfiro+ : 2’;‘4 Wo)]
i

i€l jeJ pep;
b,d;,cd
= 22[ Z (__? C]p }xi};w‘!’“tghpdl‘ipxiipo)

iel je] | peP;
ZPEPI} thfiPxiiPO ]

23 pep, bpdijpXizo/ C
b,ch .
=22 L\ *hit |dwtipe
iel jej pePil
Lper, MpipXipo
Lpep; 2b,di %550/ C
Let b, =2b,/C and &y =b,cf/C + t5h,. Then,

iel je] | peP; Z:rtel’.-,- bpdiirxiipﬂ

)

22. gi(X), keK

For k € K, function g (X) is the cost of shipping
flows that travel through cross-dock k. The trans-
portation cost consists of two parts: the inbound
transportation cost and the outbound transporta-
tion cost. For each i € I, the frequency of inbound
shipment is fi =Y ;¢; T ,ep byd;jp %3 /C and the total
inbound transportation cost is ) ,; fici. For each
j € ], the frequency of outbound shipment is f7 =
Yie1 2per DydipXijpi /C and the total outbound trans-
portation cost is 3_;; ficy;.

Because the transportation time for shipping flow
(i,j,p) through cross-dock k is (t}, + Ty + #}), the
pipeline inventory cost is (tj + T + t];)h,d;;x; and
the plant inventory cost is h,d;;,x;;/(2f7). Hence,
we have

(X)) = Zﬁkc:k + Zf;;c}?, + Z Z [(t;k +T+ tzi)
iel jel jel (i, p)elp;
. hpdiipxiij + hpdijpxijpk/(zfl;)]
b,d;ci b,d;.,cs.
3,5, (e

jeJ La. pretp,

+(t+ T+ tlgj)hpdijpxijpk)

24, perr; MpligpXijon
23, petr; bpiipXijpr/ C
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Azl

b,,c,‘;. .
T +(th+ T+ t;i)hp
il La.pretp,

>, pIElP; h dt]pxl]pk 6)
2z:(i,p)el b dl]pxl]pk/c

Let & = (cfy + ¢f)b,/C + (i + T + t:)h, then

X perp, hpdijpxijpk]
Z(i.p)eﬂ’; bpdiipxiirk
0]

Obviously, Vk € K% g,(X) is neither convex nor
concave, and therefore our problem is a nonlinear
integer program. We tried to use commercial nonlin-
ear solvers CONOPT, DICOPT, and MINOS to solve
a small instance of problem (P) with 3 suppliers,
2 plants, 2 products, 10 flows, and 2 cross-docks.
Although all the solvers terminated very quickly, they
only presented us with a local optimal solution. Fur-
thermore, they did not provide any information about
the solution quality, i.e., we have no idea of the gap
between the solution obtained and the global opti-
mal solution. Therefore, we need to develop a solu-
tion procedure for this problem. In the next two sec-
tions, we will present two heuristics and a branch-
and-bound (BB) algorithm to solve problem (P). The
first heuristic is to fix variables following a greedy
criterion and the second heuristic is based on the
Lagrangian relaxation (LR) of problem (P). The BB
algorithm uses the LR to get a lower bound for each
subproblem.

d x,”,k +

CijpkijpXijpk

8(X) = Z[ >

jel Lti.p)elP;

3. Greedy Heuristic

In this section, we propose a greedy heuristic to find
an initial feasible solution and an upper bound for
problem (P).

Let F* CF, be the set of flows that may go through
cross-dock k and E{ C F; be the set of flows that are
fixed to be shxpped d1rect1y Denote P} ={p: (i,j,p) €

F#) and IP} = ((i, p): (i, ], p) € F}).

From Equatlons (5) and (7), we can see that for
each flow (i, j, p) € F, the transportation and pipeline
inventory costs are independent of the distribution
strategies for other flows, while the plant inventory
cost is dependent on the distribution strategies for
other flows. For each unfixed flow (i, j,p) € F, the
transportation and pipeline inventory costs through
cross-dock k € K are Cyy,d;,, no matter if there is any
other flow going through cross-dock k. However, the
plant inventory cost is a function of all flows going
through cross-dock k. The more flows are shipped
through cross-dock k, the less is the plant inventory

cost for flow (i, j, p). Therefore, the minimum possi-
ble plant inventory cost of flow (i, j, p) through cross-
the transportatlon and plpehne mventory costs to sh1p
flow (i, j, p) directly, and h,d,;,/(b,d;;, + ):,,Iepa b,,, diyy)
is the maximum possible plant inventory cost to ship
flow (i, j, p) directly. Let
@ijpk = Cijpidijp — Cijpodijp. ®)

5 [ gyt — ]
ipk = | CijpkBipp + ==
» P >, p)elPt bp’ di’jp‘

r)pO ifp
b dqp + Zp‘eP‘ by’ ijp
hdp hydy;,

Z(i', P’)EIP{ bp'dl']p' bpdg}p + ZP’EPG by d',pr
©)

Then, a;, amounts to the extra transportation and
pipeline inventory costs for shipping flow (i, j, p)
through cross-dock k instead of shipping it directly,
and -, is the maximum possible saving for ship-
ping flow (i,j,p) through cross-dock k instead of
shipping it directly if §;,, <0.

Next, we present a greedy heuristic to obtain a fea-
sible distribution strategy for the flows based on the
values of 8.

ALGORITHM 1: GREEDY HEURISTIC FOR PROBLEM (P).

Step 1. Set IPf =IP; and P =@, N ={(i, j, p, k):
(i,j.p) e F, k € K} dalculate ijpk s (i,j,p.k) e N
by (8) and sort them in nonincreasing order.

Step 2. Set stopflag = true. Number the remain-
ing items in N as 1,2,...,|N| according to the
sorted order, ie., a, > a,, if ny <n, For n=1
to |N|, let (i,j,p, k) be the nth item. Calculate §;,
by (9). If 8, >0, set xy, =0, IPF = IPF\{(i, p)}
N = N\{(i,],p, k)}, stopﬂag-_false It for all k € K,

Xijp =0, then set x;0 =1 and P{ = P{ U {p}.

Step 3. If N = 2, stop; else if stopﬂag false, go
to Step 2; otherwise, go to Step 4.

Step 4. Denote (i',j,p/, k') as the one that has
the minimum 8, VY(i,j,p, k) € N (ties are broken
arbitrarily). Let K’ = {k € K: (7,j,p’,k) € N}. Set

Xippr = 1. Yk € K'\{K'}, set x;;,, =0 and update [P} =
IPA((,p)). Set N=N\{(7', /, 7', K): ke K'}. EN # 2,
go to Step 2; otherwise, stop.

= Qi +

The larger the value of a;;,, the more possible that
flow (i, j, p) will not 8o through cross-dock k. Hence,
in Step 1 we sort a;;,; in decreasing order so that we
can reduce the set of E* (or IP}) and fix more x;;, in
Step 2.

In Step 2,if 8,Wk > 0, then we set x;.; =0 because for
flow (i, j, p), going through cross- ock k is a worse
distribution strategy than being shipped directly.
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Step 4 first assigns the flow to the cross-dock with
the maximum possible savings (from Steps 2 and 3,
we can see that 6;, <0), then it goes back to Step
2 to fix more variables based on this decision.

The greedy heuristic is illustrated by Example 1.

ExaMprLE 1. Consider an instance of problem (P)
with two suppliers, two plants, one product, four
flows, and one cross-dock. The supplier and plant for
each flow are

Flow  Supplier  Plant
1 1 1
2 1 2
3 2 1
4 2 2

After data processing as illustrated in §§2.1 and 2.2,
we have
10 11
5 4 13 16
“iie = | 12 14
1 17
hpdijp = (4, 3, 2, 3),

b,d;, = (1,0.75,0.5, 0.75).

for k=0,1,

Step 1. IP! = ((1,1), 2, 1)}, IP} = ((1,2), 2,2)},
Pi=P,=Pi=P,=2, N={(1,1,1,1),(1,2,1,1),
2,1,1,L1),@2,2,1,1)}. ey =1, gy =3, ayp=2,
@y = 6. The sorted order of N is (2,2,1,1),
1,2,1,1),(,1,1,1),(1,1,1,1).

ITERATION 1.
Step 2. stopflag = true. Number items (2, 2,1, 1),
1,2,1,1),,1,1,1),(1,1,1,1) as 1, 2, 3, and 4.
For n =1, 8,5, =6+ 3/(0.75 + 0.75) — 3/0.75 =
4 > 0, xp,; =0, stopflag = false. IP} ={(1,2)}, N =
N\{(2,2,1,1)}. xp0=1, PE ={1}.
Forn=2, 8,5, =3+3/0.75-3/0.75=3 > 0, x3;; =0.
IP‘ZI =0, N= N\{(ll 2r ]-l 1)}' X1210 = 1' P1d2 = {1}'
For n=3, 8, =2+2/(14+0.5)-2/0.5= —0.667 < 0.
Forn=4, 6, =1+4/(14+0.5)-4/1=-0.333 <0.
Step 3. N # @ and stopflag = false, go to Step 2.
ITERATION 2. !
Step 2. stopflag = true. Number items (2, 1,1, 1),
(1,1,1,1)as 1 and 2.
Forn=1, 631 =2+2/(1+0.5)-2/0.5=—-0.667 < 0.
For n=2, 6,;;, =1+4/(1+0.5)-4/1=-0.333 <0.
Step 3. stopflag = true, go to Step 4.
Step 4. (2,1,1,1) has the minimum value of &
Xm =1 X =0, N={(1,1,1,1)}.
ITERATION 3.
Step 2. stopflag = true. Number items (1,1,1,1)
as 1.
Forn=1, 8;;;, =1+4/(14+0.5)-4/1=-0.333 <0.

Step 3. stopflag = true, go to Step 4.
Step 4. (1,1,1,1) has the minimum value of 8.
Xim =1, %110 =0, N =@, stop.

The solution generated by the greedy heuristic is to
shipping flows 1 and 3 through cross-dock and ship-
ping flows 2 and 4 directly. In fact, it is an optimal
solution for this example.

4. Lagrangian Relaxation Heuristic

and Branch-and-Bound Algorithm
In this section, we present an LR of problem (P) and
develop heuristic and a BB algorithm based on the LR
to solve problem (P).

4.1. Lagrangian Relaxation
The LR of problem (P) with respect to constraints
(2) is

kek?® (i, j, p)eF kekO
subject to
X €{0,1} V(i,j,p)eF, keK"

Problem LR(A) can be decomposed into |K| + 1 sub-
problems corresponding to each k € K%:

LR(A, k) min[gk(x) - X Aiipxii}ﬂ‘]
(i.j, p)eF
subject to
x,’jpk € {0; 1} V(i'}" p)ep'

4.1.1. LR(A,0). From Equation (5) in §2.1, prob-
lem LR(A, 0) can be rewritten as

_ i Lpep; MpdippXiipo
min } Z( 2 Cpodip = Aip)Xipo+ 5 ———
iel je] \ peP; ZpeP.-; pijpXijpo
subject to
xijpoe{otll V(ffj/p)ep‘

This problem can be further decomposed into |I|*|]|
subproblems corresponding to each i€, j € J:

Z . h dl“ x'“
SPO(A,i,7) min Y (Gp0dip — Agp) X0+ —mt I

pep; ZPGP:‘/ defiPxiiPO
subject to

4.1.2. LR(A, k), k € K. From Equation (7) in §2.2,
problem LR(A, k) can be rewritten as

C Z(i, )elP, h d," Xiink
Z( z (C"I'Pkdiip - Ai]’p)xijpk"’ P PP YR

jel \G.p)elp, L6, petp; b Xiipk

subject to
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X €10,1} V(i,j,p)eF.

This problem can be further decomposed into |J| sub-
problems corresponding to each j € J:

SP*(A, j) min ‘ )ZIP (Eijpkdijp - )‘ijp)xijpk
1, p)e ]

>4, pelp; hpdijpxijpk

L, perp Brdiinxiirk
subject to
X €{0,1) ¥ (i,p) € P,

4.1.3. Solving SP, k € K°. It is easy to see that
all the subproblems SP¥, k € K°, share the following
structure:

. ZneN UnZy,
GSP) minZ=) u,z,+=——" 10
( ) 'EI " ZneN WyZy ( )
subject to
z,€{0,1} VvneN. (11)

Note that objective function (10) is neither convex nor
concave and v,, w, >0 Vn e N. Denote Z(N’) as the
objective function value of (GSP) whenz,=1Vne N’
and z, =0V¥n ¢ N'. We assume that the objective func-
tion value equals 0 when z, =0VneN, ie., Z(2) =0.

4.13.1. v,/w, Is Constant. First, we consider a
special case of problem (GSP) when v, /w, is constant.
v,/w, will be constant when one of the following con-
ditions is met:

® There is only one product under consideration.

¢ For each plant, there is only one type of product
shipped to it.

* h,/b, is constant for all p € P when there are mul-
tiple products.

Suppose that v,/w, =q ¥Yn € N. Then, 3,0,/
Yowen W, =g YN'CN. Let N-={neN: u, <0}. For
any N’ C N, we have

Z(N,) = 2 un+ ZneN' Uy

neN’ ZnEN’ wy,
-v
> Y u,+9=Y y 4+ 2= Un _ 7Ny,
neN- neN- ZHEN' W,

Hence, if 3 ,cn- 4, = —4, 2,=0 ¥Yn e N is optimal to
(GSP); otherwise, z, =1 Vne N~ and z, =0 Vne
N\N- is optimal to (GSP).

413.2. v,/w, Is Not Constant. Next, we develop
a BB algorithm to solve (GSP) when v,/w, is not
constant. Before proposing the algorithm, we present
some properties of (GSP).

Without loss of generality, we assume that v,/w,,
n € N, are sorted in nondecreasing order. Problem
(GSP) has the following properties.

THEOREM 1. If there exists an | such that for any n > 1,

u, > 0, then there exists an optimal solution such that
2,=0Vn=>1

PROOF. Suppose that z* is an optimal solution and
let m =max{n € N: z} =1}. Suppose that m > I. Con-
struct a new solution z! with z}, =0 and z} = z},
Vn#gm. Leta=3, ., v,2,andb=3_,_, w,z;. Because
Vp/ Wy = V,/w, Y11 < m, then a/b < (a+v,)/(b+ w,,).
Hence,
a+v, a

-->u,=>0.

AR A
“mt W, b

Because z* is optimal, 2! is also optimal. We can con-
struct an optimal solution satisfying z, =0 Vn > by
repeating this procedure. O

Based on Theorem 1, we can remove the set of deci-
sion variables z,,n > I, and focus on the remaining
decision variables.

THEOREM 2. If there exist | and m such that u; < u,,
v £V, W; = W,, and at least one of the inequalities is
strict, then z; > z,, is held in the optimal solution.

PROOF. Suppose that z* is an optimal solution and
z; <z, ie, 21 =0, z;, = 1. Construct a new solu-
tion z! with z} =1,2}, =0, and 2z}, =z} Vn#1, m. Let
a=3 .y mUnZyand b=%,, , w,z;. Hence,

a+v a+v
Z*-Z'=u 2w+ ’)
mt (’ b+w,

b+w, B
a+v, a+v,>
- > 0.
b+w, b+w,

= (“m—u1)+(

This contradicts the fact that z* is optimal. O

Based on Theorem 2, we can conclude that if z; =0
in the optimal solution, then z,, must also be 0.

Let N! C N be the set of variables that are fixed to
be 1, N° C N be the set of variables that are fixed to
be 0, and N* = N\(N°UN?) be the set of variables that
are undetermined. Let V' =Y, 10, Wl =Y, o W,
V2 =Y, cnwo 0, and W2 = T, y\now,. Next, we
present two theorems based on fixing some variables
to be 1 or 0 for the subproblem with respect to N°,
N!, N In the proof of the next two theorems, “opti-
mal solution” means the best solution with variables
in N! and N° fixed to be 1 and 0, respectively.

THEOREM 3. Vm € N¥, if u, + v,/(w, + W) <
Viw, /[W2(W? —w,,)], then there exists an optimal solu-
tion such that z,, = 1.

PRrROOF. Suppose that there exist an optimal solu-
tion z* and a variable z,, such that z;, =0 and u,, +
Ul (W, + W) < Viw, /[W3(W? — w,)]. Construct a
new solution z! with z}, =1 and 2! =2z} Vn #m.
Let a=3Y,nv.2; and b=}, .y w,2;. Then, we have
Vli<a<V?-v, and W! <b < W? — w™. Therefore,
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Uy + 0,/ (b+w,,) < Up+0,/ (W' +w,) and aw,,/[b(b+
w,)] = Vw,/[(W? — w,)W?]. Hence,

1o _ a+tv, a_ bv,, —aw,,
L =t e T T w)
(u + Uy ) aw,,
b+w, b(b+w,)

U Viw
St W T W w)WE S

Because z* is optimal, z! is also optimal. O

THEOREM 4. Vm € N*, if u, > w,(V? - v,)/
(Wl(w,, + W')) — v,,/W?, then there exists an optimal
solution such that z,, =0.

PrOOF. Suppose that there exist an optimal solu-
tion z* and a variable z,, such that z}, =1 and u,, >
w,(V? - v,)/(W\(w,, + W')) — v,,/W? Construct a
new solution 2! with 2z} =0 and z} = 2! Vn# m. Let

a= ZneN,n#m Va2, and b= ZneN,n#m Wy2y. Then,
a+v, a bv,, —aw,
Z*-Z'=u Y —= =,
"t rrw, b bt w)

Because a < V2—v,, b>W!, b+w, <W?,

Wy, (V2 - vm) Om

= Wi, + W) W2
W, A U by, —aw,
—b(b+w,,,) Tw,+b bb+w,)

Hence, Z* — Z' > 0. Because z* is optimal, z! is also
optimal. Hence, me N°. O

Based on Theorems 14, we can fix some variables
for a subproblem of (GSP) with respect to N°, N1, N*.
In Algorithm 2, we assume that we have already
implemented Theorem 1.

ALGORITHM 2: Fix VARIABLES FOR A (GSP) Sus-
PROBLEM.

Step 1. Calculate V! =3, ;1 0,, Wl =3, W,
Vi= zneN\N“ Uns W= ZneN\No Wp.

Step 2. Sort u, +v,/w,, n € N¥, in nondecreasing
order. Let ny, ny, ..., ny. be the index of the sorted
order. Set k =1.

Step 3. If k > |[N*|, go to Step 4. Else, if u, +v,, /
(W1+w,,k) <V'w, /[W¥(W2-w, )], set N' = N‘iu{nk],

=N“\[n}, VI=Vi4to wi=w + w,,, set k =
k +1, repeat Step 3.

Step 4. For each n € N¥, if u, > w,(V? — v,)/
[WYW!'+w,)] —v,/W? set N° = NOU {n}, V’=V2-
v, W2=W2—-w,.

Step 5. For each n e N*, if there exists an ! € N°
such that ¥; < u,, v, <v,, w,; > w, and at least one of
the inequalities are strict, set N°=N°U{n}, V*=V?2 -
U, Wi=W2—-w,.

ne!

Let v, =min{v,: n € N*} and w,,, =max{w,: ne
N*}. Sort u, in N* in nondecreasing order and denote
themas u, , u,,, ..., 4,,,. A lower bound of subprob-
lem (GSP) with respect to N% N!, N* can be calcu-
lated as follows:

THEOREM 5. A lower bound of subproblem (GSP) with
respect to N°, N, N* is
V4 kv, .
min{W2, W + kwy,,, }’

k
LB= Y u,+min{} u, +
neNt j=1

k=0,1,...,|N"|I. (12)

Proor. For any subset N’ of N¥,

Vi+X,en?
z NI) - u"+ u + 1 ne. n
( ngl n§l’ " w1+zneN’w
V! + kv
5 +E”"’+ min{W2, W+ Kihp,]
where k = |[N’|. Hence, LB is a lower bound of

(Gsp). O

Based on the above theorems, we develop a BB
algorithm to solve problem (GSP).

ALGORITHM 3: BRANCH-AND-BOUND ALGORITHM
FOR (GSP).

Step 1. Let N =N! =@, N* = N. Sort v,/w,,
n € N, in nondecreasing order. Let n;, n,, ..., ny be
the index of the sorted order. Set k = |N¥|.

Step 2. If u,, <0, go to Step 3. Else, update N’ =
N°U({n;}, N*=N*\(n;}. Set k=k — 1. Go to Step 2.

Step 3. Let Z* = oo. Initialize the BB tree with
a single node (root node) corresponding to problem
(GSP). Select the root node from the BB tree.

Step 4. Use Algorithm 2 to fix variables for the
selected subproblem. If N* = &, a feasible solution 2z’
is found. Let Z' be its objective function value. If
Z' < Z*, then z* =2, Z* = Z', fathom the node; other-
wise, calculate LB based on (12). If LB > Z*, fathom
the node and go to Step 5; otherwise, select a variable
to branch. Add two nodes corresponding to the two
subproblems to the BB tree.

Step 5. If all the nodes of the BB tree are fath-
omed, stop. Otherwise, select an unfathomed node
from the BB tree and go to Step 4.

Algorithm 3 is illustrated by the following example:
ExamrLE 2. Consider a (GSP) with

u,=(@1,-1,-2,-3,1), (13)
=@1,1,3,4,5), (14)
=(@1,1,1,1,1). (15)

Step 1 of Algorithm 3: N°=N!=
are already sorted.

@, N*=N. v,/w,
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Step 2 of Algorithm 3: z; =0, N° = {5}, N* =
(1,2,3,4).

Step 1 of Algorithm 2 Vi=Wl= 0,Vi=9, W2=4.

Steps 2 and 3 of Algorithm 2: N'={2, 3,4}, V! =8,
W'=3,V2=9, W, =4.

Step 4 of Algorithm 2: z, =0, N° = {1, 5}. Hence,
the optimal solution is 2, =z;=0and z, =2; =2, =1
with an objective value of —10/3.

4.2. Lagrangian Relaxation Heuristic
The Lagrangian dual of problem (P) with respect to
constraints (2) is

(LD) max LR(A).

It provides a lower bound to the primal problem. The
dual problem (LD) can be solved by the subgradient
algorithm (Beasley 1993).

In each iteration of the subgradient algorithm, for a
given A, we obtain a LR solution. Based on this solu-
tion, we can construct a feasible solution to problem
(P) as follows:

* First, consider the flows that are assigned to only
one cross-dock in the solution. (The corresponding
constraints in (2) are satisfied. Note that direct ship-
ment is regarded as assigned to dummy cross-dock
0.) In the new solution, the flows are still assigned to
the same cross-dock as in the LR solution.

* Next, consider the flows that are assigned to
more than one cross-dock in the solution. (The corre-
sponding constraints in (2) are not satisfied with the
left-hand side greater than the right-hand side.) For
each such flow and each cross-dock that is assigned
in the LR solution, we calculate the cost by assigning
the flow to the selected cross-dock and removing it
from the nonselected cross-docks. When we remove
the flow from the nonselected cross-docks, the cost for
the flows that are assigned to the nonselected cross-
docks may increase. In the new solution, the flow
is assigned to the cross-dock that has the minimum
objective value.

¢ Finally, we consider the flows that are not
assigned to any cross-dock in the solution. (The corre-
sponding constraints in (2) are not satisfied with the
left-hand side less than the right-hand side.) For each
such flow, we calculate the cost by assigning the flow
to each cross-dock. When we add a flow to a cross-
dock, the cost for the flows that are assigned to the
selected cross-dock may decrease. In the new solu-
tion, the flow is assigned to the cross-dock with the
minimum objective function value.

In the LR heuristic, we apply the above steps only
under the following conditions:

(1) when the lower bound is improved;

(2) when the LR solution satisfies constraints (2) for
most flows, i.e, ¥ j yyerlLrexo X — 1] < 7, where x"
is the LR solution and r is a given positive number.

4.3. Branch-and-Bound Algorithm

A BB algorithm can be developed to solve prob-
lem (P). For each subproblem, the lower bound is
obtained by their corresponding LR with respect to
constraints (2). When branching, we select a flow and
generate |K| 41 subproblems corresponding to cross-
dock k, k € K°. In each subproblem, the selected flow
is assigned to the corresponding cross-dock.

5. Computational Results

In this section, the performances of the LR heuristic
and the BB algorithm are tested by solving randomly
generated problems of different sizes. The algorithm
is programmed in Microsoft Visual C++ 5.0. All of
the experimental tests were carried out on a Dell
OptoPlex GX240 with 512 MB RAM and 1.8 GHz
CPU. Computation times are in seconds.

Let U[a, b] be a uniform distribution between a
and b. The problems were randomly generated by the
following scheme. The Cartesian coordinates of the
suppliers, the plants, and the cross-docks are drawn
from U[0,1,000]. The distances are calculated using
Euclidean distances. The transportation costs between

suppliers, plants, and cross-docks cg., Cixs Cj are equal
to the corresponding distance, and the transportation
times #f, t;, t; are the values of their correspond-
ing distances divided by 4,000. The quantities d;;,
are drawn from U[10, 100]. The truck capacity C is
1,000 units. The inventory-carrying cost h, and the
truck capacity occupied by the products b, are gener-
ated from U[1, 10]. The time spent at cross-dock T; is
drawn from U[0.1,0.2].

Three data sets were generated based on the
scheme described above. The first one has 50 flows
with |I| =|]J| =5 and |P| = |K| = 3, the second one
has 100 flows with |I| =10, |J]|=|P| =35, and |K| =3,
and the third one has 200 flows with |I| =|]| =10 and
|P| = |K| =5. For each data set, we change the quan-
tities d;;, and inventory-carrying costs h, to see the
impact of these changes on the solution.

The parameters for the LR are as follows. The initial
feasible solution is generated by the greedy heuris-
tic. The injtial Lagrangian multiplier corresponding
to each flow is equal to the minimum of transporta-
tion plus pipeline cost for that flow. The initial value
of B (the factor used in determining the step size)
is 2. Its value will be halved if the lower bound
does not improve after 10 iterations. In the LR heuris-
tic, the maximum number of iterations is 50. In the
BB algorithm, the maximum number of LR iterations
is 50 and 20 for the root node and other nodes,
respectively.

The computational results are presented in Table 3.
To express the changes in d;;, and h,, in the table, Col-
umn “w,” is the demand weight, which means that
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Table 3 Computational Resuits for Small-Size Problems
No. of flows Wy W, LR time BB time LDG (%) LRG (%) NFSD Direct cost (%)
50 1 0.1 0.046 0.046 0 0 14 35.61
03 0.093 0.093 0 0 0 0.00
0.5 0.141 0.157 0.052 0.044 0 0.00
0.7 0.047 0.047 0 0 0 0.00
1 0.14 0.515 0.022 0.015 0 0.00
100 1 0.1 0.156 0.203 0.023 0.014 62 62.26
0.3 0.156 0.156 0 0 40 40.78
0.5 0.188 0.188 ] 0 21 18.38
0.7 0.188 0.188 0 0 12 10.89
1 0.079 0.079 0 0 7 5.45
200 1 0.1 0.282 0.297 0 0 141 64.77
03 0.626 16.068 0.002 0 99 46.01
05 0.938 0.938 ] ] 84 38.72
0.7 0.391 0.391 ] 0 77 36.71
1 0.828 1 0.023 0.020 66 30.21
50 2 0.1 0.093 0.703 0.204 0.134 24 54.62
03 0.1 1.375 0.883 0.682 8 1mn
0.5 0.109 0.234 0.131 0.051 2 6.85
0.7 0.109 0.14 0.039 0.037 0 0.00
1 0.125 0.547 0.039 0.018 0 0.00
100 2 0.1 0.14 2.547 0.020 0.001 81 79.10
03 0.188 1.094 0.037 0 67 69.88
0.5 0.313 4.017 0.582 0.196 49 52.45
0.7 0.329 2.063 0.057 0.023 40 39.69
1 0.328 1.735 0.376 0.284 40 40.63
200 2 041 0.297 05 0.052 0.035 180 87.77
03 0.343 32.288 2.879 0.465 146 7219
05 0.563 21.145 1.542 0.478 141 69.32
0.7 0.469 16.144 2.398 0.870 128 63.69
1 0.563 8.69 3.462 1.672 114 56.23
50 3 01 0.094 1.048 0.009 0 40 81.36
0.3 0.079 0.079 0 ] 23 52.23
0.5 0.109 0.156 1.254 0.266 19 46.89
07 0.125 0.781 1.753 0.575 7 15.56
1 0.094 0.094 0 0 5 12.09
100 3 0.1 0.094 1.86 0.115 0.047 82 79.43
03 0.125 0.125 ] 0 81 79.32
05 0.218 1.922 0.198 ] 70 7222
0.7 0.281 1.359 0.565 0.131 62 66.93
1 0.265 1.406 1.180 0.110 61 65.87
200 3 0.1 0.219 15.269 1.020 0.005 194 95.74
0.3 0.281 25.302 3.556 0.210 180 88.64
05 . 0.344 150.39 5.223 0.530 163 81.34
0.7 0.328 55.728 4.807 0.663 159 78.57
1 0.563 24.457 1.236 0.278 155 77.09

the demand of the corresponding problem is w,d;,
and Column “w;” is the inventory weight, which
means that the inventory-carrying cost of the corre-
sponding problem is w;h,. Column “LR time” (“BB
time”) is the CPU time for the LR heuristics (the BB
algorithm). Column “LDG” is the duality gap of the
LR heuristic, which is equal to (UByg — LB;z)/LB3.
Column “LRG” is the gap between the upper bound
found by the LR heuristic and the optimal solution
found by the BB algorithm. Column “NFSD” is the
number of flows that are shipped directly. Column

“Direct cost” is the percentage of the direct cost in the
total cost.

From Table 3, we can conclude the following.

e The LR heuristic is very fast. The LR time
increases with the number of flows. The demand
weight and the inventory weight have no significant
impact on the CPU time. This is also true for the
BB time.

* The LR lower bound is tight. It is within 5%
of the LR upper bound for almost all the problems
except one. The average LDG is 0.75%.
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Table4  Computational Resulls for Medium-Size Problems Solved Table 6 Computational Results for a Single Product

by BB

y |/l I K| |F| LRtime BBtime LDG (%) LRG (%)
| ¥]] |P| IK| IF BB time

50 50 5 500 0.063 0.125 0.0032 0
10 10 10 5 500 12,369.20 70 70 5 1,200 0.281 0.297 0.0002 0
10 10 100 5 500 1227920 100 100 5 2,000 1313 5407 01956  0.0010
10 50 10 5 500 38.77
10 50 100 5 500 386.80
50 10 10 5 500 2450  plant is large, and therefore the corresponding (GSP)
50 50 10 5 S00 %343 " The longest time that the LR heuristic took for th
50 50 100 5 500 a71.77 e longes e that the euristic took for the
10 10 10 5 1,000 6.620.47 problems in Table 5 is a little more than one hour. It
10 10 100 5 1,000 1787856  also shows that the quality of the solutions generated
10 50 10 5 1,000 207090 by the LR heuristic is still high for large-size prob-
10 50 100 5 1,000 1,745.86 lems. The largest gap is only 1.55%.
gest gap y

* The LR heuristic generates high-quality solu-
tions. The gap between the LR heuristic solution and
the optimal solution is less than 1% for almost all the
problems except one. The average LRG is 0.172%.

Note that the values LRG and LDG can be reduced
if we set the stop criteria for the subgradient algo-
rithm at the root node of the BB tree with a larger
iteration limit. In the experimental experience, only
50 iterations are performed.

To report on the size of problems that the LR heuris-
tic and the BB algorithm can solve in a reasonable
time (for example, an hour of CPU time), we gen-
erated medium-size problems to be solved by the
BB algorithm and large-size problems to be solved by
the LR heuristic (here we increase the number of itera-
tions in the subgradient algorithm to 100). The results
are listed in Tables 4 and 5 for the BB algorithm and
the LR heuristics, respectively.

From Table 4, we can see that the BB algorithm
spent more than one hour to obtain an optimal solu-
tion for all the problems with 10 plants except for one,
while it spent less than one hour for all the problems
with 50 plants. The reason behind this might be that
for a given number of flows, when the number of
plants is small, the number of flows assigned to each

Table 5 Computational Results for Large-Size Problems Solved by LR
i Wi 1P| IK| |F| LR time LRG (%)
10 100 100 5 3,000 1,523.41 117
10 100 1,000 5 3,000 1,437.07 0.70
10 100 100 5 5,000 3,721.83 1.55
10 100 1,000 5 5,000 3,258.39 0.88
100 10 100 5 3,000 2,156.30 0.06
100 10 1,000 5 3,000 723.57 0.00
100 10 100 5 5,000 2,785.82 0.06
100 10 1,000 5 5,000 3,328.56 0.04
100 100 100 5 3,000 1,287.02 0.39
100 100 1,000 5 3,000 1,285.74 0.41
100 100 100 5 5,000 3,428.06 0.35
100 100 1,000 5 5,000 3,620.60 0.82

We also tested the performance of the LR heuris-
tic and the BB algorithm for the problems of ship-
ping a single type of product. The results are listed in
Table 6. For this type of problems, our algorithms can
find a solution very quickly for large problems, and
the solution quality is very good.

Next, we investigate the change in the cost when
we change the demand weight and inventory weight.
We used the data set with 200 flows as our exam-
ple. Figures 2 and 3 show the sensitivity of the total
cost and the number of flows that are shipped directly
(NFSD) to the changes in the demand and inventory
weights. As expected, when the demand and inven-
tory weights increase, the total cost increases. NFSD
increases as the demand weight increases. The rea-
son for this is that when demand weight is high, the
frequency of direct shipping increases, and therefore
fewer flows need to be shipped through cross-dock.
However, NFSD decreases as the inventory weight
increases. This is due to the fact that when the inven-
tory weight is high, it is more desirable to ship the
flow at a higher delivery frequency, which can be real-
ized by shipping it through a cross-dock together with
other flows.

250,000
—— Wy =1
200,000 4 |—W— wy=2
—h— Wy=3 /
% 150,000 - e
s —
g
S 100,000 -
50,000 - //
0 T L] T L} 1
0.1 0.3 05 0.7 1.0
Inventory weight
Figure 2 Sensitivity of Total Cost to the Change of Demand and

Inventory Weights
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2501 * To extend the model by including different types
‘ of truck and less-than-full-truckload strategies. We

g

may have a truck fleet with different capacities.
‘\\‘\*\‘ Choosing the type of truck for each route is also an
important decision faced by management. Further-

more, sometimes it may be beneficial using the less-
than-full-truckload strategy, especially for expensive

No. of flows shipped directly
o
o

1007 products with small physical sizes.
—— wy=1 * To include more details about the operation of
50 [—W—w,=2 the cross-dock, for example, the coordination issue
A Wg=3 and the inventory-holding issue at the cross-dock.

0 T T T T 1

0.1 0.3 0.5 0.7 1.0
Inventory weight
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Figure 4 illustrates the cost distribution for dif-

ferent demand weights for the data set when the 140,000
inventory weight is fixed to be 1. We refer to “trans- M Direct transportation
portation cost” as the sum of the transportation and 120.000 T @ Cross-dock transportation

pipeline inventory cost (the reason we combine these

110 Direct invent
two is that both transportation and pipeline inven- 100,000 rectnveniony

I Cross-dock inventory

tory costs are determined by the demand quantity B 80000
instead of delivery frequency) and “inventory cost” é '
as the plant inventory cost. It is not surprising to see 60,000
that both the direct transportation and inventory costs
increase with the demand weight because more flows 40,000
are shipped directly.
Figure 5 shows the cost distribution for different 20,000
inventory weights for the data set when the demand
weight is fixed to be 1. When the inventory weight 0= 1 > 3
increases, the direct transportation cost decreases, Demand weight

which is consistent with the fact that NFSD decreases.
Although the direct transportation cost decreases, the  Figure4  Sensitivity of Cost Distribution to the Change of Demand
direct inventory cost increases with the inventory Weight

weight. Both the cross-dock transportation and inven-
tory costs increase with the inventory weight.

60,000
8 Direct transportation
6. Summary 50,000 - M Cross-dock transportation
We considered the problem of selecting the appro- O Direct inventory
priate distribution strategy for delivering a family of 40,000 H B Cross-dock inventory

products from a set of suppliers to a set of plants so
that the total transportation, pipeline inventory, and
plant inventory costs are minimized. Two heuristics
and an exact algorithm are presented. The algorithms
were tested on randomly generated data and their
performances are satisfactory.

Some directions for future work are:

* To extend the model to include the strategy of
milk-run. 0

¢ In practice, management may require that the
number of shipments in a week is integer so that the

same pattern can be repeated each week. We suggest  Figura 5  Sensitivity of Cost Distribution 1o the Change of Inventory
extending the model to take this into account. Weight

0.1 0.3 0.5 0.7 1.0
Inventory weight
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ments and suggestions, which helped them to improve the
presentation of the paper significantly.
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